

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Django Pydenticon 0.1 documentation

Django Pydenticon documentation

Django Pydenticon is a Django application that provides an identicon
generator. It builds upon Pydenticon, a Python library for generating
deterministic identicons. Pydenticon capabilities are merely exposed via a web
interface (through HTTP).

Support

In case of problems with the application, please do not hestitate to contact the
author at django-pydenticon (at) majic.rs. The library itself is hosted on
Github, and on author’s own servers:

	https://github.com/azaghal/django-pydenticon

	https://code.majic.rs/django-pydenticon

	https://projects.majic.rs/django-pydenticon

License

Django Pydenticon is released under terms of BSD (3-Clause) License:

Copyright (c) 2014, Branko Majic
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this
 list of conditions and the following disclaimer in the documentation and/or
 other materials provided with the distribution.

 Neither the name of Branko Majic nor the names of any other
 contributors may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contents:

	About Django Pydenticon
	Why was this application created?

	Features

	Installation
	Requirements

	Using pip

	Configuring your Django installation

	Where to go next?

	Usage
	Requesting identicons

	URL instance namespaces

	Generating identicon URLs in templates

	Generating identicon URLs programatically

	Overriding identicon parameters

	Privacy

	Configuration
	PYDENTICON_ROWS

	PYDENTICON_COLUMNS

	PYDENTICON_WIDTH

	PYDENTICON_HEIGHT

	PYDENTICON_PADDING

	PYDENTICON_FORMAT

	PYDENTICON_FOREGROUND

	PYDENTICON_BACKGROUND

	PYDENTICON_DIGEST

	PYDENTICON_INVERT

	API Reference
	Views

	URL

	Release notes
	0.1

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Pydenticon 0.1 documentation

About Django Pydenticon

Django Pydenticon is a Django application that provides an identicon
generator. The implementation uses Pydenticon library for generating the
identicons:

	https://github.com/azaghal/pydenticon/

	https://projects.majic.rs/pydenticon

Django Pydenticon comes with some pre-defined sane defaults for generating the
identicons, but is configurable, letting the user generate identicons with
custom parameters.

Why was this application created?

A number of web-based applications written in Python have a need for visually
differentiating between users by using avatars for each one of them.

This functionality is particularly popular with comment-posting since it
increases the readability of threads.

The problem is that lots of those applications need to allow anonymous users to
post their comments as well. Since anonymous users cannot set the avatar for
themselves, usually a random avatar is created for them instead.

There is a number of free (as in free beer) services out there that allow web
application developers to create such avatars. Unfortunately, this usually means
that the users visiting websites based on those applications are leaking
information about their browsing habits etc to these third-party providers.

Django Pydenticon was written in order to resolve such an issue for one of the
applications (Django Blog Zinnia, in particular), and to allow the author to set
up his own avatar/identicon service. It was developed to be used in combination
with Pydenticon library for generating identicons.

Features

Django Pydenticon has the following features:

	Uses Pydentcion library for generating the identicons.

	User data used for generating the identicons is read from URL.

	Passed user data can be pre-hashed in order to avoid leakage of important
information.

	All aspects of Pydenticon generator can be configured via project settings.

	Some parameters for generated identicons can be overridden per-request.

	Comes with sane default configuration options. No special configuration is
necessary beyond installing and enabling the application in project.

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Pydenticon 0.1 documentation

Installation

Django Pydenticon can be installed through one of the following methods:

	Using pip, which is the easiest and recommended way for production websites.

Requirements

Django Pydenticon depends on the following Python packages:

	Django [https://www.djangoproject.com/] web framework.

	Pydenticon [https://github.com/azaghal/pydenticon] library, which is used for generating
the identicons.

Using pip

In order to install latest stable release of Django Pydenticon using pip, run
the following command:

pip install django-pydenticon

In order to install the latest development version of Django Pydenticon from
Github, use the following command:

pip install -e git+https://github.com/azaghal/django-pydenticon#egg=django_pydenticon

Warning

You will need to update the pip installation in your virtual environment
if you get the following error while running the above command:

AttributeError: 'NoneType' object has no attribute 'skip_requirements_regex'

You can update pip to latest version with:

pip install -U pip

After this you should proceed to configure your Django installation.

Configuring your Django installation

Once Django Pydenticon has been installed, you need to perform the following
steps in order to make it available inside of your Django project:

	Edit your project’s settings configuration file (settings.py), and update
the INSTALLED_APPS to include application django_pydenticon.

	Edit your project’s URL configuration file (urls.py), and add the
following line to top of the file:

import django_pydenticon.urls

	Edit your project’s URL configuration file (urls.py), and add the
following line to the urlpatterns setting:

url(r'^identicon/', include(django_pydenticon.urls.get_patterns())),

Note

It is not mandatory to use identicon/ as prefix. You can use any prefix
as with any other Django application.

After this the Django Pydenticon application will be available under the
/identicon/ path (relative to your Django project’s base URL), or under any
custom prefix path you have selected for deploying the application.

Where to go next?

After Django Pydenticon has been installed, you should learn how to use
the application, and may also be intersted to change one of default
configuration options.

Warning

It is highly recommended to have a look at documentation covering
privacy if you have not done so before. The chapter covers
some common privacy issues when using personally-identifiable information for
generating identicons (like e-mails or names).

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Pydenticon 0.1 documentation

Usage

Django Pydenticon is targeted at developers who wish to integrate an identicon
service in their Django projects. This chapter covers details on how an
identicon image is served, and how to integrate Django Pydenticon with other
applications.

Requesting identicons

Identicon images are served through specially formatted URL. Whenever such URL
is submitted to Django Pydenticon application, an identicon image is created on
the fly.

The format of URL is /image/USER_DATA (relative to prefix URL assigned for
the application), where USER_DATA can be either in hashed or raw format. For
example, if Django Pydenticon application is reachable under /identicon/,
identicon images can be requested using the following URLs:

	/identicon/image/somedataforhashing (raw data)

	/identicon/image/55d207ea47247b375dc1f495517f1332 (pre-hashed data using
md5)

Warning

Keep in mind that if user data is submitted in pre-hashed form, the digest
used should match with the digest configured for Django Pydenticon
application. If digest does not match, the user data will be treated as any
other user data, and it will be hashed once again.

URL instance namespaces

When resolving Django Pydenticon URLs, you should always use the URL names in
conjunction with application instance namespace.

Default application instance namespace is django_pydenticon. Alternative
instance namespace can be specified by passing an (optional) argument to
django_pydenticons.urls.get_patterns function.

For example, if default namespace is in use, the image URL would be
referenced as django_pydenticon:image in template tag url or function
call reverse.

Generating identicon URLs in templates

If the data (whether raw or hashed) is available in template’s context, an
identicon URL can be easily generated from within the template itself. This can
be achieved via url tag.

The URL for serving the identicons is named image. It should always be
referenced in conjunction with an application instance namespace. The
application namespace defaults to django_pydenticon, unless custom instance
namespace is passed when including the application URLs via
django_pydenticon.urls.get_patterns. In case of default namespace, that
means the URL would be referenced to as django_pydenticon:image.

For example, let’s say that it’s necessary to show an identicon based on
username next to every comment. Related template snippet could look something
similar to the following:

{% for comment in comments %}
 {{ comment.text }}
{% endfor %}

Generating identicon URLs programatically

The URLs can be generated programtically, using Python code. Afterwards those
URLs can be either passed into template’s rendering context, or used inside of
code for whatever other purposes. This is achieved by using the reverse URL
resolver (from django.core.urlresolvers).

The URL for serving the identicons is named image. It should always be
referenced in conjunction with an application instance namespace. The
application namespace defaults to django_pydenticon, unless custom instance
namespace is passed when including the application URLs via
django_pydenticon.urls.get_patterns. In case of default namespace, that
means the URL would be referenced to as django_pydenticon:image.

For example, let’s say that it’s necessary to show an identicon based on
username next to every comment. A special context variable could be passed into
template that would contain a list of comments, where each comment consists out
of identicon URL and comment itself. The Python code could look something
similar to:

comments_context = []

for comment in comments:
 identicon_url = reverse("django_pydenticon:image",
 kwargs={"data": comment.user.username})
 comments_context.append({"text": comment.text,
 "identicon_url": identicon_url})

return render_to_response('myapp/comments.html',
 {"comments": comments_context})

With the above context set-up, the myapp/comments.html template could
contain a snippet similar to:

{% for comment in comments %}
 {{ comment.text }}
{% endfor %}

Overriding identicon parameters

By default, the identicon generator will use parameters from project settings
for each request, falling back to application defaults if none were defined. In
addition to this static configuration, some parameters can be overridden per
request.

Per-request identicon generator parameters are passed via GET parameters. The
following GET parameters are available:

	w

	Specifies the width of generated identicon image in pixels. Overrides the
PYDENTICON_WIDTH configuration option.

	h

	Specifies the height of generated identicon image in pixels. Overrides the
PYDENTICON_HEIGHT configuration option.

	f

	Specifies the format of generated identicon. Overrides the
PYDENTICON_FORMAT configuration option.

	p

	Specifies the padding that will be added to the generated identicon image. The
value should be provided as 4 comma-separated positive integers.

	i

	Specifies whether the background and foreground colour in generated identicon
should be inverted (swapped) or not. The value passed for this parameter
should be true or false.

Passing an invalid parameter value via GET parameter will result in a
SuspiciousOperation exception being raised.

For example, the following request would generate an identicon with width of
320, height of 240, format PNG, padding (top, bottom, left, right)
of 10, 10, 20, 20, and with inverted foreground and background colours:

/identicon/image/somedata?w=320&h=240&f=png&p=10,10,20,20&i=true

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Pydenticon 0.1 documentation

Privacy

Generating identicons thorugh Django Pydenticon using raw user data may have
undesirable consequences on privacy if the data used is meant to be ketp as
a secret.

This privacy issue can in particular arise if using data like usernames,
e-mails, or real names of users for generating avatars in publicly-accessible
websites.

As a rule-of-thumb, you should never, ever pass such data raw into the
identicon URL. This approach would leak the confidential information in plain
text to any interested parties. Instead, calculate a digest of the raw data, and
pass the hex digest as part of the URL instead.

Note

In some cases you may opt to pass raw data. For example, if usernames are
visible as part of posted comments, they’re probably already scrapeable, and
having them as part of identicon URL won’t hide them anyway.

Additionally, the default digest algorithm (MD5) may not be safe enough for
such data. Even in case where a stronger digest algorithm is used, an attacker
might attempt to generate rainbow tables [https://en.wikipedia.org/wiki/Rainbow_tables], and scrape the web pages
hashed data contained within identicon URLs.

There’s two feasible approaches to resolve this:

	Always apply salt to user-identifiable data before calculating a hex
digest. This can hugely reduce the efficiency of brute force attacks based on
rainbow tables (although it will not mitigate it completely).

	Instead of hashing the user-identifiable data itself, every time you need to
do so, create some random data instead, hash that random data, and store it
for future use (cache it), linking it to the original data that it was
generated for. This way the hex digest being put as part of an image link into
HTML pages is not derived in any way from the original data, and can therefore
not be used to reveal what the original data was.

Keep in mind that using identicons will inevitably still allow people to track
someone’s posts across your website. Identicons will effectively automatically
create pseudonyms for people posting on your website. If that may pose a
problem, it might be better not to use identicons at all.

Finally, small summary of the points explained above:

	Always use hex digests in identicon URLs.

	Instead of using privately identifiable data for generating the hex digest,
use randmoly generated data, and associate it with privately identifiable
data. This way hex digest cannot be traced back to the original data through
brute force or rainbow tables.

	If unwilling to generate and store random data, at least make sure to use
salt when hashing privately identifiable data.

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Pydenticon 0.1 documentation

Configuration

A number of configuration options can be set in Django project that affect the
identicon generation. Each configuration option comes with a default value
that’s used if it’s not specified explicitly in project settings.

The application will verify configuration options, and raise an
ImproperlyConfigured exception in case of a problem.

PYDENTICON_ROWS

Specifies how many block rows a generated identicon should have. The value
should be a positive integer.

Default value: 5

PYDENTICON_COLUMNS

Specifies how many block columns a generated identicon should have. The value
should be a positive integer.

Default value: 5

PYDENTICON_WIDTH

Specifies the width of generated identicon images in pixels (without
padding). The value should be a positive integer.

Default value: 200

PYDENTICON_HEIGHT

Specifies the height of generated identicon images in pixels (without
padding). The value should be a positive integer.

Default value: 200

PYDENTICON_PADDING

Specifies the padding that will be added to the generated identicon image. The
padding is specified as tuple containing 4 elements, where each element is a
positive integer.

Each element of the tuple is used for padding the identicon image along one of
the edges. The order is: top, bottom, left, right.

Default value: (20, 20, 20, 20)

PYDENTICON_FORMAT

Specifies the default format of the generated identicons. The value should be a
string. Supported values are:

	"png" (for PNG images)

	"ascii" (for ASCII/textual representation of identicon)

Default value: "png"

PYDENTICON_FOREGROUND

Specifies a list or tuple of foreground colours that should be used when
generating the identicons. Each element of list/tuple should be a string
conformant to colour specification from the Pillow [http://pillow.readthedocs.org/en/latest/reference/ImageColor.html] library.

Default value: ("rgb(45,79,255)", "rgb(254,180,44)", "rgb(226,121,234)",
"rgb(30,179,253)", "rgb(232,77,65)", "rgb(49,203,115)", "rgb(141,69,170)")

PYDENTICON_BACKGROUND

Specifies a (single) background colour that should be used when generating the
identicons. This should be a string conformant to colour specification from the
Pillow [http://pillow.readthedocs.org/en/latest/reference/ImageColor.html]
library. The value should be a string.

Default value: "rgb(224,224,224)"

PYDENTICON_DIGEST

Specifies digest class that should be used for generating the identicons. Digest
class should support accepting a single constructor argument for passing the
data on which the digest will be run. Instances of the class should also support
a single hexdigest() method that should return a digest of passed data as a hex
string. The value should be a callable.

Default value: hashlib.md5

PYDENTICON_INVERT

Specifies whether the background and foreground colour in generated identicons
should be inverted (swapped) or not. The value should be a boolean (True or
False).

Default value: False

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django Pydenticon 0.1 documentation

API Reference

Views

This section lists documentation for all views available in Django Pydenticon.

	
django_pydenticon.views.image(request, data)

	Generates identicon image based on passed data.

Arguments:

data - Data which should be used for generating an identicon. This data
will be used in order to create a digest which is used for generating the
identicon. If the data passed is a hex digest already, the digest will be
used as-is.

Returns:

Identicon image in raw format.

URL

This section lists documentation for all URL-related functions available in
Django Pydenticon.

	
django_pydenticon.urls.get_patterns(instance='django_pydenticon')

	Generates URL patterns for Django Pydenticon application. The return value
of this function can be used directly by the django.conf.urls.include
function.

Arguments:

instance - Instance namespace that should be assigned to generated URL
patterns.

Returns:

Tuple consisting out of URL patterns, instance namespace, and application
namespace.

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Django Pydenticon 0.1 documentation

Release notes

0.1

Initial release of Django Pydenticon. Implemented features:

	Serving of identicons through designated URL.

	User data for generating identicons passed via URL.

	Sane configuration defaults for identicon generator for zero-configuration.

	Ability to set parameters of generated identicons.

	Ability to override some of the identicon generation attributes per-request
via GET parameters.

	Full documentation covering installation, usage, privacy. API reference
included as well.

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Django Pydenticon 0.1 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 django_pydenticon	

 	
 	
 django_pydenticon.urls	

 	
 	
 django_pydenticon.views	

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Django Pydenticon 0.1 documentation

Index

 D
 | G
 | I

D

 	

 	django_pydenticon.urls (module)

 	

 	django_pydenticon.views (module)

G

 	

 	get_patterns() (in module django_pydenticon.urls)

I

 	

 	image() (in module django_pydenticon.views)

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/up.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Django Pydenticon 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Branko Majic.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/file.png

_static/minus.png

_static/down.png

